Змеиные яды: как они работают и можно ли спастись
Змеиные яды — бесспорные шедевры эволюции. Убийственные
краски нейротоксинов, яркие тона гемолитических белков… эти коктейли
совершенствовались многие миллионы лет и стали настоящими произведениями
химического искусства, способного сразить зазевавшегося ценителя
наповал.
Ядовитые животные есть в каждом классе животных (за исключением птиц), но каждый из них двигался к этому своим путем. У медуз появились специализированные стрекательные клетки, содержащие сложную органеллу книдоциль с острым шипом. У пчел и ос под производство яда приспособлены придаточные железы половой системы. Змеиный яд — это слюна, густой водный раствор, содержащий сложную и смертоносную смесь токсичных белков. Он столь безупречен, что уже включает некоторое количество протеолитических ферментов, которые размягчают ткани и начинают переваривать жертву: она все равно никуда не денется.
До появления методов анализа и сравнения ДНК биологам приходилось опираться на не слишком надежную почву сравнительной анатомии, эмбриологии и смежных дисциплин. Такой традиционный подход говорил, что общий предок всех ядовитых змей мог жить около 100 млн лет назад, когда они уже давно разошлись со своими чешуйчатыми родственниками-ящерицами. В самом деле, ядовитые ящерицы — исключительная редкость, тогда как яд имеется как минимум у четверти видов змей. Тяжелые последствия укусов многих ящериц связывали с бактериями, в том числе и с многочисленными патогенами, которые обитают в их ротовой полости.
Однако не так давно в экспериментах с клеточными культурами обнаружилось, что слюна многих ящериц обладает настоящей токсичностью и способна подавлять свертывание крови, вызывать паралич и прочие неприятные эффекты. Отдельные белковые компоненты змеиного яда найдены у 1500 видов ящериц, включая знаменитых комодских «драконов». Добавив к этому данные химического и ДНК-анализа, ученые выдвинули гипотезу о куда более древнем эволюционном происхождении ядов, относя этот знаменательный момент к общему предку змей, игуан и некоторых других ящериц, который жил около 170 млн лет назад и совершил особые перестройки своего генома.
Гены, кодирующие важные для
работы различных клеток и тканей белки, дуплицировались и начали
действовать в слюнных железах. Такие дупликации в природе не редкость —
например, коротконогость биглей, такс и родственных им пород собак стала
результатом удвоения гена сигнального фактора FGF4, участвующего в
регуляции роста конечностей. Однако у «ядовитого предка» случайные
мутации и отбор изменили функции исходной молекулы — и белок, мирно
служивший каким-нибудь регулятором свертывания крови, мог превратиться в
убойный токсин, вызывающий ее неконтролируемую коагуляцию. Например,
фосфолипаза А2, небольшой и в целом безобидный фермент, участвующий в
переваривании липидов, превратился в настоящего киллера, который без
разбора уничтожает живые клетки, растворяя их мембраны. И таких киллеров
в змеином яде могут быть десятки: на белки приходится до 90% его сухой
массы и практически 100% смертельных эффектов.
Змеиные яды — самые сложные из всех природных ядов, и сравнивать их с химическим оружием значило бы недооценивать их совершенство. Хлор или иприт — простые молекулы, работающие грубо и беспорядочно; токсины кобры или черной мамбы действуют с убийственной точностью и эффективностью. Каждый из них по отдельности — и общий рецепт их смеси — отточены миллионами лет эволюции и атакуют совершенно определенные мишени в организме жертвы. Ключевыми из них можно назвать клетки крови, нервной и сердечно-сосудистой системы.
Дендротоксин 1, входящий в состав яда мамб, способен блокировать большую группу потенциал-чувствительных калиевых каналов, нарушая передачу нервных импульсов по нейронам. Разнообразные α-нейротоксины, имеющиеся у кобр и многих других змей, связываются с рецепторами ацетилхолина, полностью блокируя работу синапсов — прежде всего тех, что передают команду от нервных клеток к мышечным, — что заканчивается параличом и смертью от асфиксии. Фасцикулины в яде гремучников дезактивируют ацетилхолинэстеразу, которая удаляет лишний нейротрансмиттер из синаптического пространства — и избыток его вызывает неконтролируемые спазмы и судороги.
Это лишь малая толика токсинов змеиных ядов и их мишеней: другие могут вызывать поражение почек и паралич сердечной мышцы, разрушение выстилающего сосуды эндотелия и массовый некроз тканей. Гадюки и многие кобры превратили в убийц обыкновенные факторы свертывания крови. Из целого каскада скоординированно действующих белков, который запускает механизм образования тромба в случае травмы, тот или иной может «переходить на темную сторону» и вызывать всеобщее тромбообразование прямо в сосудах. Зрелище это ужасное: тело жертвы больше не заполнено густой кровью, почти вся она превращается в свернувшиеся сгустки и водянистую плазму, которая из-за повышения давления заставляет тело раздуваться, как воздушный шар, и сочится буквально изо всех отверстий — включая крошечные следы, оставленные ядовитыми зубами.
Яд общего предка змей и некоторых ящериц, которых иногда объединяют в группу Toxicofera, видимо, такой сложностью не отличался и комбинировал довольно ограниченное количество видоизменившихся белков. Не имелось у него и особых приспособлений для эффективной инъекции токсичной слюны в организм жертвы. Поэтому разные группы этих чешуйчатых пошли разными путями, разрабатывая собственные средства и механизмы доставки. По большому счету, этот процесс охватил все системы змеиного организма, хотя эпицентр его пришелся, конечно, на слюнные железы, ставшие настоящими фабриками по синтезу токсинов. И на зубы, которые превратились в острые, начиненные ядом шприцы.
Считается, что самым совершенным ядовитым аппаратом могут похвастаться представители обширного и повсеместно распространенного семейства гадюковых. Их большие ядовитые железы окружают мощные жевательные и височные мышцы, способные моментально выдавить яд. По каналам он поступает в крупные ядовитые зубы, которые у многих видов стали полыми и острыми, как иглы. Погруженные в толстую слизистую основу, эти зубы автоматически «раскладываются», стоит змее широко раскрыть пасть — и при усилии мускулов, которые ее захлопывают, яд выдавливается под кожу жертве.
Некоторые кобры действуют еще подлее — плюются ядом на 1−2 м, метя при этом в глаза. Но этот навык — довольно позднее приобретение, и для плевков приспособлены обычные ядовитые зубы с новыми боковыми отверстиями. К тому же попавший на роговицу яд не смертелен и лишь вызывает сильное раздражение, позволяя змее нанести укус, способность к которому эти виды вовсе не утратили. Ослепленная жертва обречена, если только не сможет противопоставить яду какой-нибудь антидот.
Многие змеи вынуждены соблюдать величайшую осторожность, чтобы не укусить себя за хвост и не погибнуть от собственного яда. В схватках между ними гибель от отравления — обычное дело, особенно если в конфликт вступили пресмыкающиеся разных видов. Зато другие сделались нечувствительны к действию собственных токсинов — как индийская кобра, очковая змея, ацетилхолиновые рецепторы которой нечувствительны к действию основного компонента ее яда, α-нейротоксина. Случайные мутации одарили такой устойчивостью и мангустов, а также ежей, свиней и медоедов — родственников куниц, которые охотятся на ядовитых змей куда активнее любимого всеми Рикки-Тикки-Тави.
Но самую поразительную устойчивость к змеиным ядам демонстрируют опоссумы, которые почти невосприимчивы даже к действию ботулотоксина и рицина. Их главный секрет кроется в удивительной молекуле LTNF — белковом факторе крови, нейтрализующем летальные токсины. Изолированный и инъецированный мышам внутрибрюшно, он помог им выжить в экспериментах с введением летальных доз ядов всех четырех основных семейств ядовитых змей — и даже некоторых токсинов другого происхождения, включая яд скорпиона. Фактор LTNF открыт недавно, и механизм его действия пока неясен, но он активно изучается — ведь теоретически кровь опоссумов может обеспечить нас уникальным по эффективности антидотом.
Пока же противоядие для каждого случая приходится получать отдельно, вводя несмертельные дозы животным — обычно коровам или лошадям — и выделяя из их крови появившиеся в результате иммунного ответа готовые антитела. При некотором терпении и большой отваге такие антитела можно «воспитать» и в собственном теле: легендарный исследователь, основатель серпентария в Майами Билл Хааст вводил себе микродозы ядов в течение всей жизни. Он не только благополучно пережил 172 укуса, но и был донором уникальной крови, спасшей десятки жизней людей, укушенных змеями, противоядия для которых не производится.
Токсины — инструмент невероятно эффективный, но не всемогущий. Недаром подавляющее большинство животных все-таки придерживаются других методов защиты и нападения, которые обходятся организму не так дорого. В самом деле, исследование гремучих змей до и после забора у них яда показало, что синтез белков, необходимых для восполнения запаса смертельных доз, заставляет напрягаться весь организм и в течение трех суток работать в усиленном режиме, повышая уровень метаболизма на 11%. Такие же измерения проведены и для гадюкообразных смертельных змей, чрезвычайно опасных обитателей Австралии: им для восстановления приходится повышать метаболизм почти на 70%.
Синтез яда — занятие не для слабаков, оно требует усилий, сравнимых с теми, что затрачивают бегуны на марафонской дистанции. Но еще больший вклад требует эволюция и выращивание сложных систем его доставки. По сути, это отдельное направление развития, в жертву которому ядовитые виды приносят массу ресурсов. В некотором роде его можно назвать альтернативой сложному и большому мозгу: наряду с этим прожорливым органом химическое оружие — одна из самых дорогих и самых эффективных находок природы.
Комментариев нет:
Отправить комментарий